Tuesday, 22 May 2012

Wireless#2: Antenna system and tower


สายนำสัญญาณ
การเลือกใช้สายนำสัญญาณ ต้องดูจากคุณสมบัติต่างๆ ของสายนำสัญญาณ เช่น
-                    ค่า Impedance โดยมาตรฐานแล้วการส่งอย่างเดียวจะอยู่ที่ 30 โอห์ม ส่วนการรับอย่างเดียวจะอยู่ที่ 75 โอห์ม (สายอากาศโทรทัศน์ เป็นต้น) มาตรฐานการรับและส่งจึงถูกกำหนดอยู่ที่ 50 โอห์ม
-                    ค่าการลดทอนสัญญาณ สายนำสัญญาณแต่ละแบบจะมีค่าการลดทอนที่ต่างกัน ตามความถี่ที่สูงขึ้นและระยะที่ยาวขึ้น จะมีค่าการลดทอนสูงขึ้น ทำให้กำลังของคลื่นวิทยุลดลงไปด้วย ซึ่งระยะที่ใช้งานจะเป็นตัวพิจารณาแบบของสายนำสัญญาณที่นำมาใช้
-                    ตัวนำภายใน ตัวนำทางไฟฟ้าที่ดีที่สุดคือ แร่เงิน แต่ราคาสูงมาก ทำให้สายนำสัญญาณส่วนใหญ่ทำมาจากทองแดงที่นำไฟฟ้าได้รองลงมาจากแร่เงิน แต่ราคาถูกและอ่อนตัว
ตัวนำภายในสายจะมีทั้งแบบถักหลายเส้น และแบบเส้นเดียว ซึ่งแบบหลังจะให้ประสิทธิภาพในการนำสัญญาณดีกว่า
-                    ฉนวนและชีลด์ วัสดุที่ทำเป็นตัวฉนวนกั้นระหว่างตัวนำและชีลด์ อาจจะเป็นปัจจัยในการเลือกสายนำสัญญาณส่วนหนึ่ง เพราะถ้าฉนวนไม่มีความแข็งแรงและยืดหยุ่นพอ อาจทำให้เวลาทำการดัดงอสาย ชีลด์ที่อยู่บนฉนวนด้านนอกอาจจะขูดฉนวนจนกระทั่งสัมผัสตัวนำภายใน ทำให้เกิดการลัดวงจรขึ้น
ส่วนของชีลด์นั้น ส่วนใหญ่จะทำมาจากใยเหล็กถัก เป็นตัวกักสัญญาณวิทยุไม่ให้สูญเสียออกไปจากสายนำสัญญาณมากเกินไป ซึ่งประสิทธิภาพของการลดการสูญเสียสัญญาณก็ขึ้นอยู่กับชีลด์ด้วย
-                    เปลือกหุ้ม เป็นส่วนที่สัมผัสกับสภาพแวดล้อมภายนอก ซึ่งต้องพิจารณาจากพื้นที่ที่นำไปใช้งานด้วย
แต่ในการใช้งานขั้นสูง ความยาวของสายนำสัญญาณจะมีความสัมพันธ์กับความยาวคลื่น ซึ่งจะใช้ในกรณีการต่อสายอากาศหลายต้นจากแหล่งกำเนิดเดียวกัน (การคำนวณมีความซับซ้อนพอสมควร)

สายอากาศ
หรือเสาอากาศที่เรียกกันโดยทั่วไป เป็นส่วนที่ใช้แพร่กระจายคลื่นความถี่วิทยุออกไปตามการออกแบบใช้งานของสายอากาศ ส่วนความถี่ใช้งานนั้นจะถูกออกแบบให้ใช้ตามย่านความถี่นั้นๆ เฉพาะ ไม่สามารถใช้งานร่วมกันได้เช่น อุปกรณ์ที่ใช้ความถี่ 2.4 GHz ต้องใช้กับสายอากาศ 2.4 GHz เท่านั้น (ยกเว้นอุปกรณ์ภาครับอย่างเดียวเช่น วิทยุ FM-AM)

ทำไมเรียกว่า สายอากาศ?
เนื่องจากสมัยก่อน การสื่อสารวิทยุที่ความถี่ต่ำ จะมีความยาวคลื่นยาวมาก ซึ่งการนำเหล็กหรือตัวนำโลหะอื่นๆ มาใช้แพร่กระจายคลื่น จะทำให้มีน้ำหนักมาก ออกแบบยากและการเก็บรักษาทำได้ช้าและลำบาก โดยเฉพาะในช่วงภาวะสงครามที่ความถี่วิทยุมีอิทธิพลต่อประสิทธิภาพในการรบ สายอากาศจะทำมาจากเส้นลวดทองแดง ที่มีน้ำหนักเบา ออกแบบง่ายและเก็บรักษาได้ง่ายและรวดเร็ว ทำให้เรียกเส้นลวดที่ใช้แพร่สัญญาณว่า สายอากาศ

ลักษณะการแพร่กระจายของคลื่นวิทยุ
คุณสมบัติของสายอากาศในทางทฤษฎีจะมีรูปลักษณะการกระจายคลื่นสองแบบคือ
-                    แนวตั้ง (Vertical) จะมองการแพร่กระจายคลื่นจากมุมมองด้านข้างของสายอากาศ
-                    แนวนอน (Horizontal) จะมองการแพร่กระจายคลื่นจากมุมมองด้านบนของสายอากาศ
แต่ในความเป็นจริงการกระจายคลื่นมีหลายรูปแบบทั้งแบบแนวสายตา สะท้อนวัตถุ สะท้อนผิวโลกหรือชั้นเมฆ ขึ้นอยู่กับระยะทาง สิ่งกีดขวาง ฯลฯ

อัตราขยายของสายอากาศ (Gain: dB)
เป็นตัวบ่งบอกอัตราขยายของสายอากาศนั้นๆว่า สามารถขยายกำลังที่ถูกส่งเข้ามาที่สายอากาศและแพร่กระจายออกไปได้ไกลเท่าไหร่ โดยหน่วยของอัตราขยายจะแบ่งออกได้เป็น 2 ประเภทคือ
dBi เป็นหน่วยของอัตราขยายเทียบกับสายอากาศแบบ Isotropic
dBd เป็นหน่วยของอัตราขยายเทียบกับสายอากาศแบบ Dipole
โดยที่ 2.15 dBi = 0 dBd
อัตราขยายยิ่งสูง ระยะทางยิ่งไปได้ไกลขึ้น แต่องศาในการกระจายคลื่นจะยิ่งแคบลง

ประเภทของสายอากาศ
สายอากาศรอบตัว (Omni-directional) จะออกอากาศในแนวนอน 360 องศา (เป็นค่าตายตัวของสายอากาศประเภทนี้) ส่วนแนวตั้งขึ้นอยู่กับอัตราขยาย อัตราขยายยิ่งมาก การกระจายคลื่นแนวตั้งจะยิ่งแคบลง โดยส่วนใหญ่จะอยู่ที่ 2 – 18 dBi
สายอากาศทิศทาง (Directional) จะมีทั้งแบบกึ่งทิศทางและแบบทิศทาง
แบบกึ่งทิศทาง (Dipole, Patch panel, Sector) การแพร่กระจายคลื่นจะออกมารอบทิศทาง แต่จะเน้นออกไปทิศทางด้านหน้าของสายอากาศ ซึ่งระยะทางและมุมการกระจายคลื่นขึ้นอยู่กับอัตราขยาย
แบบทิศทาง (Yagi-Uda, Helical (Helix), Grid, Parabolic Dish) จะเน้นทิศทางด้านหน้ามากกว่าแบบอื่นๆ และสัญญาณด้านหลังและด้านข้างจะแพร่กระจายออกมาน้อยมาก ส่วนใหญ่อัตราขยายจะสูงกว่า 20 dBi
สายอากาศแบบ Helical (Helix) หรือสายอากาศก้นหอย จะมีความพิเศษอยู่ตรงที่ ลักษณะของสนามแม่เหล็กไฟฟ้าที่แพร่กระจายออกมา จะมีทั้งแนวตั้งและแนวนอน ทำให้สายอากาศภาครับไม่จำเป็นต้องทำแนวเดียวกับสายอากาศต้นทางที่เป็น helical และค่าสัดส่วนอัตราขยายหน้า/หลัง (Front/back ratio) มีอัตราที่ดีมาก แต่ก็เป็นสายอากาศที่สร้างยากอีกด้วย
Tips:
สายอากาศแบบยากิ-อูดะ (Yagi-Uda) ออกแบบโดย ศจ. ฮิเดจุกุ ยากิ และ ศจ. ชินทาโร อูดะ แห่งมหาวิทยาลัยโตเกียวอิมพีเรียล จึงตั้งชื่อสายอากาศแบบนี้เพื่อเป็นเกียรติแก่ท่านทั้งสอง แต่ปัจจุบันจะเรียกติดปากกันเหลือแค่สายอากาศยากิ

ค่า SWR (Standing Wave Ratio) หรือ VSWR (Voltage Standing Wave Ratio)
เป็นส่วนสำคัญที่สุดในการตรวจสอบว่า สายอากาศที่ใช้อยู่ มีประสิทธิภาพเพียงใด โดยค่ามาตรฐานจะอยู่ที่ 1.1:1 – 1.5:1 กรณีเลวร้ายสุดไม่ควรเกิน 2:1
สัดส่วนนี้เป็นสัดส่วนระหว่างกำลังส่งที่ถูกส่งออกไปต่อกำลังส่งที่ถูกสะท้อนกลับมา ตัวอย่างเช่น
สายอากาศใช้ในความถี่ 2.4 – 2.5 GHz ต้องใช้ค่ากึ่งกลางมาคำนวณการทำสายอากาศคือ 2.45 GHz ซึ่งจะได้ค่าออกมาเป็น 29980 / 2450 = 12.2367 เซนติเมตร
และถ้าคำนวณความถี่ปลายจะได้ค่าเป็น 2.4 GHz = 12.4917 ซม. และ 2.5 GHz = 11.992 ซม.
แต่ในหลักความเป็นจริง สายอากาศไม่สามารถยืดหดความยาวตามความถี่ใช้งานได้ จึงต้องใช้ค่ากึ่งกลาง และนำมาคำนวณเพื่อให้สามารถใช้งานได้ตลอดทั้งย่านความถี่ที่จะใช้งาน โดยค่า SWR อาจจะเป็นลักษณะดังนี้
2.400 GHz = 1.5:1
2.420 GHz = 1.3:1
2.440 GHz = 1.1:1
2.460 GHz = 1.3:1
2.480 GHz = 1.5:1
ซึ่งเป็นค่าโดยประมาณ ทำให้สามารถอธิบายได้ว่าในจำนวนช่องสัญญาณ 11 ช่อง ทำไมช่องสัญญาณที่ 6 จึงมีความแรงสูงสุด เพราะอยู่ในช่วงที่สายอากาศมีประสิทธิภาพสูงสุดนั่นเอง
ซึ่งการคำนวณค่า SWR ที่แท้จริงจะซับซ้อนกว่านี้ ในที่นี้จึงเป็นการอธิบายแบบคร่าวๆ เท่านั้น
Tips:
ในหลักความเป็นจริง สายอากาศที่มีค่า SWR เป็น 1.x:1 ตลอดช่วงความถี่ไม่มีอยู่จริงในโลก
อาจจะมีสายอากาศที่มีค่า SWR (เฉพาะความถี่กึ่งกลาง) เป็น 1:1 อยู่จริง แต่อาจจะเกิดปรากฏการณ์ หูหนวกตาบอด รับไม่ได้ส่งไม่ออก เกิดขึ้น เพราะค่าองค์ประกอบอื่นๆ อาจจะเกิดการผันผวนอย่างรุนแรงจนทำให้สายอากาศไร้ประสิทธิภาพไปในที่สุด

กำลังส่ง
เป็นกำลังที่ใช้ผลักดันสัญญาณวิทยุให้ออกไปสู่ปลายทาง มีหน่วยเป็นวัตต์ (W)
ส่วนกำลังส่งย่อยลงไปจะมีหน่วยเป็นมิลลิวัตต์ (mW: 1/1000 W)
หน่วยของกำลังส่งอีกแบบหนึ่งคือการแปลงค่าจาก mW เป็น dBm เพื่อให้ง่ายต่อการคำนวณค่า E.I.R.P. และค่า E.R.P.

dBm
Watts

dBm
Watts

dBm
Watts
-50
0.01 µW

8
6 mW

30
1.0 W
-40
0.1 µW

9
8 mW

31
1.3 W
-30
0.001 mW

10
10 mW

32
1.6 W
-20
0.01 mW

11
13 mW

33
2.0 W
-10
0.10 mW

12
16 mW

34
2.5 W
-9
0.125 mW

13
20 mW

35
3.2 W
-8
0.16 mW

14
25 mW

36
4.0 W
-7
0.20 mW

15
32 mW

37
5.0 W
-6
0.25 mW

16
40 mW

38
6.3 W
-5
0.32 mW

17
50 mW

39
8.0 W
-4
0.40 mW

18
63 mW

40
10 W
-3
0.50 mW

19
79 mW

41
13 W
-2
0.64 mW

20
100 mW

42
16 W
-1
0.80 mW

21
126 mW

43
20 W
0
1.0 mW

22
158 mW

44
25 W
1
1.3 mW

23
200 mW

45
32 W
2
1.6 mW

24
250 mW

46
40 W
3
2.0 mW

25
316 mW

47
50 W
4
2.5 mW

26
398 mW

48
64 W
5
3.2 mW

27
500 mW

49
80 W
6
4 mW

28
630 mW

50
100 W
7
5 mW

29
800 mW

53
200 W

กำลังส่งยิ่งสูง สัญญาณวิทยุยิ่งไปได้ไกล แต่ต้องอยู่ในความสมดุลของอุปกรณ์ เพราะถ้ากำลังส่งสูงเกินไปจนทำให้อุปกรณ์อิเล็กทรอนิกส์อื่นๆ ในอุปกรณ์ Wireless เสียหายเช่น ภาคกรองความถี่ อาจจะเกินคลื่นวิทยุที่ไม่พึงประสงค์ออกมารบกวนอย่างรุนแรงได้

กรณีที่กำลังส่งเท่ากัน สายอากาศประเภทเดียวกันและอัตราขยายเท่ากัน ความถี่วิทยุที่ต่ำกว่าจะไปได้ไกลกว่า เนื่องจากอัตราการสูญเสียสัญญาณน้อยกว่า และการเดินทางของสัญญาณมีลักษณะกระจายมากกว่า เช่น กำลังส่ง 1 วัตต์ที่ความถี่ 7 MHz เสาสูง 20 เมตร จากไทยสามารถส่งไปได้ถึงหมู่เกาะมัลดีฟส์ ฝั่งทะเลตะวันตกของอินเดีย ส่วนกำลังส่ง 1 วัตต์ที่ความถี่ 2.4 GHz เสาสูง 20 เมตรอาจจะไปได้ 20 กิโลเมตร โดยประมาณ
(ส่วนใหญ่ขึ้นอยู่กับสภาพแวดล้อม เช่น สภาพอากาศ ความชื้น ตำแหน่งความสูงของสายอากาศ เป็นต้น)

ตำแหน่งความสูงของสายอากาศ
ตำแหน่งความสูงของสายอากาศจะมีค่าแปรผันตามความถี่วิทยุ ยิ่งความถี่สูงขึ้น ลักษณะการแพร่กระจายจะเข้มข้นขึ้นและกระจายตัวน้อยลง ทำให้ได้รับผลกระทบจากส่วนโค้งของผิวโลกโดยตรง จึงต้องติดตั้งสายอากาศให้สูงขึ้น

สิ่งบดบัง
สิ่งบดบังที่อยู่ระหว่างทางจะมีผลกระทบในการรับ-ส่งสัญญาณ โดยเฉพาะความถี่วิทยุที่สูงขึ้นยิ่งเกิดผลกระทบมากขึ้น
วัสดุที่ดูดซับหรือบดบังสัญญาณได้มากที่สุด คือ วัสดุที่มีความชื้นสูงหรือความหนาแน่นสูง เช่น ม่านน้ำตก ต้นไม้ที่ขึ้นหนาแน่น คอนกรีตเสริมเหล็กหนา เป็นต้น

เสา (Tower)
มีหลายรูปแบบให้เลือกใช้งานตามพื้นที่ที่ต้องการใช้งาน
-                    Guy wired ใช้ลวดสลิงเป็นตัวพยุงเสา น้ำหนักเสาเบาแต่จะใช้พื้นที่ค่อนข้างมาก ถ้าใช้แบบท่อเหล็กเดี่ยว ไม่ควรสูงเกิน 12 เมตร เนื่องจากความยากลำบากในการซ่อมบำรุง
-                    Self support ใช้ตัวเสาเป็นตัวพยุงเสาของมันเอง ใช้พื้นที่น้อยกว่า แต่น้ำหนักมาก เพราะต้องรักษาระดับด้วยตัวมันเอง
มีทั้งแบบที่ทำจากเหล็กและอลูมิเนียม และการตั้งเสาสูงต้องอยู่ในกฎข้อบังคับของกรมการขนส่งทางอากาศด้วย

การรบกวนสัญญาณ
การรบกวนและการถูกรบกวนสัญญาณ เกิดได้จากหลายสาเหตุ สิ่งที่มีผลกระทบโดยตรงกับ Wireless คือคลื่นแม่เหล็กไฟฟ้า เพราะเป็นคลื่นประเภทเดียวกัน แม้ว่าความถี่จะไม่ตรงกันหรือห่างกันมาก แต่ถ้าหากความเข้มข้นของคลื่นแม่เหล็กไฟฟ้ามีสูง หรืออุปกรณ์ด้อยประสิทธิภาพในการคัดกรองคลื่นรบกวน โดยเฉพาะอุปกรณ์ส่งสัญญาณที่ส่งกำลังสูงแต่ส่งคลื่นที่ไม่พึงประสงค์ออกมามาก ยิ่งมีผลกระทบมาก
ส่วนสาเหตุจากธรรมชาติจะเป็นประจุไฟฟ้าในอากาศ เช่น ฟ้าผ่า พายุสุริยะ ขั้วแม่เหล็กโลก เป็นต้น

Dynamic Frequency Selection (DFS)
เป็นรูปแบบการเปลี่ยนช่องสัญญาณเองโดยอัตโนมัติ เมื่ออุปกรณ์ตรวจพบสัญญาณรบกวนจากความถี่เรดาร์ภาคพื้นดิน ซึ่งได้รับการยืนยันในหลายพื้นที่ของประเทศไทยแล้วว่าช่วงความถี่ที่ถูกรบกวนมากที่สุดคือ 5.5 – 5.7 GHz (5 GHz Middle band) โดยจะมีผลกระทบมากกับการเชื่อมต่อสัญญาณระยะไกล

No comments:

Post a Comment