สายนำสัญญาณ
การเลือกใช้สายนำสัญญาณ ต้องดูจากคุณสมบัติต่างๆ ของสายนำสัญญาณ เช่น
- ค่า Impedance โดยมาตรฐานแล้วการส่งอย่างเดียวจะอยู่ที่ 30 โอห์ม ส่วนการรับอย่างเดียวจะอยู่ที่ 75 โอห์ม (สายอากาศโทรทัศน์ เป็นต้น) มาตรฐานการรับและส่งจึงถูกกำหนดอยู่ที่ 50 โอห์ม
- ค่าการลดทอนสัญญาณ สายนำสัญญาณแต่ละแบบจะมีค่าการลดทอนที่ต่างกัน ตามความถี่ที่สูงขึ้นและระยะที่ยาวขึ้น จะมีค่าการลดทอนสูงขึ้น ทำให้กำลังของคลื่นวิทยุลดลงไปด้วย ซึ่งระยะที่ใช้งานจะเป็นตัวพิจารณาแบบของสายนำสัญญาณที่นำมาใช้
- ตัวนำภายใน ตัวนำทางไฟฟ้าที่ดีที่สุดคือ แร่เงิน แต่ราคาสูงมาก ทำให้สายนำสัญญาณส่วนใหญ่ทำมาจากทองแดงที่นำไฟฟ้าได้รองลงมาจากแร่เงิน แต่ราคาถูกและอ่อนตัว
ตัวนำภายในสายจะมีทั้งแบบถักหลายเส้น และแบบเส้นเดียว ซึ่งแบบหลังจะให้ประสิทธิภาพในการนำสัญญาณดีกว่า
ตัวนำภายในสายจะมีทั้งแบบถักหลายเส้น และแบบเส้นเดียว ซึ่งแบบหลังจะให้ประสิทธิภาพในการนำสัญญาณดีกว่า
- ฉนวนและชีลด์ วัสดุที่ทำเป็นตัวฉนวนกั้นระหว่างตัวนำและชีลด์ อาจจะเป็นปัจจัยในการเลือกสายนำสัญญาณส่วนหนึ่ง เพราะถ้าฉนวนไม่มีความแข็งแรงและยืดหยุ่นพอ อาจทำให้เวลาทำการดัดงอสาย ชีลด์ที่อยู่บนฉนวนด้านนอกอาจจะขูดฉนวนจนกระทั่งสัมผัสตัวนำภายใน ทำให้เกิดการลัดวงจรขึ้น
ส่วนของชีลด์นั้น ส่วนใหญ่จะทำมาจากใยเหล็กถัก เป็นตัวกักสัญญาณวิทยุไม่ให้สูญเสียออกไปจากสายนำสัญญาณมากเกินไป ซึ่งประสิทธิภาพของการลดการสูญเสียสัญญาณก็ขึ้นอยู่กับชีลด์ด้วย
ส่วนของชีลด์นั้น ส่วนใหญ่จะทำมาจากใยเหล็กถัก เป็นตัวกักสัญญาณวิทยุไม่ให้สูญเสียออกไปจากสายนำสัญญาณมากเกินไป ซึ่งประสิทธิภาพของการลดการสูญเสียสัญญาณก็ขึ้นอยู่กับชีลด์ด้วย
- เปลือกหุ้ม เป็นส่วนที่สัมผัสกับสภาพแวดล้อมภายนอก ซึ่งต้องพิจารณาจากพื้นที่ที่นำไปใช้งานด้วย
แต่ในการใช้งานขั้นสูง ความยาวของสายนำสัญญาณจะมีความสัมพันธ์กับความยาวคลื่น ซึ่งจะใช้ในกรณีการต่อสายอากาศหลายต้นจากแหล่งกำเนิดเดียวกัน (การคำนวณมีความซับซ้อนพอสมควร)
สายอากาศ
หรือเสาอากาศที่เรียกกันโดยทั่วไป เป็นส่วนที่ใช้แพร่กระจายคลื่นความถี่วิทยุออกไปตามการออกแบบใช้งานของสายอากาศ ส่วนความถี่ใช้งานนั้นจะถูกออกแบบให้ใช้ตามย่านความถี่นั้นๆ เฉพาะ ไม่สามารถใช้งานร่วมกันได้เช่น อุปกรณ์ที่ใช้ความถี่ 2.4 GHz ต้องใช้กับสายอากาศ 2.4 GHz เท่านั้น (ยกเว้นอุปกรณ์ภาครับอย่างเดียวเช่น วิทยุ FM-AM)
ทำไมเรียกว่า สายอากาศ?
เนื่องจากสมัยก่อน การสื่อสารวิทยุที่ความถี่ต่ำ จะมีความยาวคลื่นยาวมาก ซึ่งการนำเหล็กหรือตัวนำโลหะอื่นๆ มาใช้แพร่กระจายคลื่น จะทำให้มีน้ำหนักมาก ออกแบบยากและการเก็บรักษาทำได้ช้าและลำบาก โดยเฉพาะในช่วงภาวะสงครามที่ความถี่วิทยุมีอิทธิพลต่อประสิทธิภาพในการรบ สายอากาศจะทำมาจากเส้นลวดทองแดง ที่มีน้ำหนักเบา ออกแบบง่ายและเก็บรักษาได้ง่ายและรวดเร็ว ทำให้เรียกเส้นลวดที่ใช้แพร่สัญญาณว่า สายอากาศ
ลักษณะการแพร่กระจายของคลื่นวิทยุ
คุณสมบัติของสายอากาศในทางทฤษฎีจะมีรูปลักษณะการกระจายคลื่นสองแบบคือ
- แนวตั้ง (Vertical) จะมองการแพร่กระจายคลื่นจากมุมมองด้านข้างของสายอากาศ
- แนวนอน (Horizontal) จะมองการแพร่กระจายคลื่นจากมุมมองด้านบนของสายอากาศ
แต่ในความเป็นจริงการกระจายคลื่นมีหลายรูปแบบทั้งแบบแนวสายตา สะท้อนวัตถุ สะท้อนผิวโลกหรือชั้นเมฆ ขึ้นอยู่กับระยะทาง สิ่งกีดขวาง ฯลฯ
อัตราขยายของสายอากาศ (Gain: dB)
เป็นตัวบ่งบอกอัตราขยายของสายอากาศนั้นๆว่า สามารถขยายกำลังที่ถูกส่งเข้ามาที่สายอากาศและแพร่กระจายออกไปได้ไกลเท่าไหร่ โดยหน่วยของอัตราขยายจะแบ่งออกได้เป็น 2 ประเภทคือ
dBi เป็นหน่วยของอัตราขยายเทียบกับสายอากาศแบบ Isotropic
dBd เป็นหน่วยของอัตราขยายเทียบกับสายอากาศแบบ Dipole
โดยที่ 2.15 dBi = 0 dBd
อัตราขยายยิ่งสูง ระยะทางยิ่งไปได้ไกลขึ้น แต่องศาในการกระจายคลื่นจะยิ่งแคบลง
ประเภทของสายอากาศ
สายอากาศรอบตัว (Omni-directional) จะออกอากาศในแนวนอน 360 องศา (เป็นค่าตายตัวของสายอากาศประเภทนี้) ส่วนแนวตั้งขึ้นอยู่กับอัตราขยาย อัตราขยายยิ่งมาก การกระจายคลื่นแนวตั้งจะยิ่งแคบลง โดยส่วนใหญ่จะอยู่ที่ 2 – 18 dBi
สายอากาศทิศทาง (Directional) จะมีทั้งแบบกึ่งทิศทางและแบบทิศทาง
แบบกึ่งทิศทาง (Dipole, Patch panel, Sector) การแพร่กระจายคลื่นจะออกมารอบทิศทาง แต่จะเน้นออกไปทิศทางด้านหน้าของสายอากาศ ซึ่งระยะทางและมุมการกระจายคลื่นขึ้นอยู่กับอัตราขยาย
แบบทิศทาง (Yagi-Uda, Helical (Helix), Grid, Parabolic Dish) จะเน้นทิศทางด้านหน้ามากกว่าแบบอื่นๆ และสัญญาณด้านหลังและด้านข้างจะแพร่กระจายออกมาน้อยมาก ส่วนใหญ่อัตราขยายจะสูงกว่า 20 dBi
สายอากาศแบบ Helical (Helix) หรือสายอากาศก้นหอย จะมีความพิเศษอยู่ตรงที่ ลักษณะของสนามแม่เหล็กไฟฟ้าที่แพร่กระจายออกมา จะมีทั้งแนวตั้งและแนวนอน ทำให้สายอากาศภาครับไม่จำเป็นต้องทำแนวเดียวกับสายอากาศต้นทางที่เป็น helical และค่าสัดส่วนอัตราขยายหน้า/หลัง (Front/back ratio) มีอัตราที่ดีมาก แต่ก็เป็นสายอากาศที่สร้างยากอีกด้วย
Tips:
สายอากาศแบบยากิ-อูดะ (Yagi-Uda) ออกแบบโดย ศจ. ฮิเดจุกุ ยากิ และ ศจ. ชินทาโร อูดะ แห่งมหาวิทยาลัยโตเกียวอิมพีเรียล จึงตั้งชื่อสายอากาศแบบนี้เพื่อเป็นเกียรติแก่ท่านทั้งสอง แต่ปัจจุบันจะเรียกติดปากกันเหลือแค่สายอากาศยากิ
ค่า SWR (Standing Wave Ratio) หรือ VSWR (Voltage Standing Wave Ratio)
เป็นส่วนสำคัญที่สุดในการตรวจสอบว่า สายอากาศที่ใช้อยู่ มีประสิทธิภาพเพียงใด โดยค่ามาตรฐานจะอยู่ที่ 1.1:1 – 1.5:1 กรณีเลวร้ายสุดไม่ควรเกิน 2:1
สัดส่วนนี้เป็นสัดส่วนระหว่างกำลังส่งที่ถูกส่งออกไปต่อกำลังส่งที่ถูกสะท้อนกลับมา ตัวอย่างเช่น
สายอากาศใช้ในความถี่ 2.4 – 2.5 GHz ต้องใช้ค่ากึ่งกลางมาคำนวณการทำสายอากาศคือ 2.45 GHz ซึ่งจะได้ค่าออกมาเป็น 29980 / 2450 = 12.2367 เซนติเมตร
และถ้าคำนวณความถี่ปลายจะได้ค่าเป็น 2.4 GHz = 12.4917 ซม. และ 2.5 GHz = 11.992 ซม.
แต่ในหลักความเป็นจริง สายอากาศไม่สามารถยืดหดความยาวตามความถี่ใช้งานได้ จึงต้องใช้ค่ากึ่งกลาง และนำมาคำนวณเพื่อให้สามารถใช้งานได้ตลอดทั้งย่านความถี่ที่จะใช้งาน โดยค่า SWR อาจจะเป็นลักษณะดังนี้
2.400 GHz = 1.5:1
2.420 GHz = 1.3:1
2.440 GHz = 1.1:1
2.460 GHz = 1.3:1
2.480 GHz = 1.5:1
ซึ่งเป็นค่าโดยประมาณ ทำให้สามารถอธิบายได้ว่าในจำนวนช่องสัญญาณ 11 ช่อง ทำไมช่องสัญญาณที่ 6 จึงมีความแรงสูงสุด เพราะอยู่ในช่วงที่สายอากาศมีประสิทธิภาพสูงสุดนั่นเอง
ซึ่งการคำนวณค่า SWR ที่แท้จริงจะซับซ้อนกว่านี้ ในที่นี้จึงเป็นการอธิบายแบบคร่าวๆ เท่านั้น
Tips:
ในหลักความเป็นจริง สายอากาศที่มีค่า SWR เป็น 1.x:1 ตลอดช่วงความถี่ไม่มีอยู่จริงในโลก
อาจจะมีสายอากาศที่มีค่า SWR (เฉพาะความถี่กึ่งกลาง) เป็น 1:1 อยู่จริง แต่อาจจะเกิดปรากฏการณ์ “หูหนวกตาบอด” รับไม่ได้ส่งไม่ออก เกิดขึ้น เพราะค่าองค์ประกอบอื่นๆ อาจจะเกิดการผันผวนอย่างรุนแรงจนทำให้สายอากาศไร้ประสิทธิภาพไปในที่สุด
กำลังส่ง
เป็นกำลังที่ใช้ผลักดันสัญญาณวิทยุให้ออกไปสู่ปลายทาง มีหน่วยเป็นวัตต์ (W)
ส่วนกำลังส่งย่อยลงไปจะมีหน่วยเป็นมิลลิวัตต์ (mW: 1/1000 W)
หน่วยของกำลังส่งอีกแบบหนึ่งคือการแปลงค่าจาก mW เป็น dBm เพื่อให้ง่ายต่อการคำนวณค่า E.I.R.P. และค่า E.R.P.
dBm
|
Watts
|
dBm
|
Watts
|
dBm
|
Watts
| ||
-50
|
0.01 µW
|
8
|
6 mW
|
30
|
1.0 W
| ||
-40
|
0.1 µW
|
9
|
8 mW
|
31
|
1.3 W
| ||
-30
|
0.001 mW
|
10
|
10 mW
|
32
|
1.6 W
| ||
-20
|
0.01 mW
|
11
|
13 mW
|
33
|
2.0 W
| ||
-10
|
0.10 mW
|
12
|
16 mW
|
34
|
2.5 W
| ||
-9
|
0.125 mW
|
13
|
20 mW
|
35
|
3.2 W
| ||
-8
|
0.16 mW
|
14
|
25 mW
|
36
|
4.0 W
| ||
-7
|
0.20 mW
|
15
|
32 mW
|
37
|
5.0 W
| ||
-6
|
0.25 mW
|
16
|
40 mW
|
38
|
6.3 W
| ||
-5
|
0.32 mW
|
17
|
50 mW
|
39
|
8.0 W
| ||
-4
|
0.40 mW
|
18
|
63 mW
|
40
|
10 W
| ||
-3
|
0.50 mW
|
19
|
79 mW
|
41
|
13 W
| ||
-2
|
0.64 mW
|
20
|
100 mW
|
42
|
16 W
| ||
-1
|
0.80 mW
|
21
|
126 mW
|
43
|
20 W
| ||
0
|
1.0 mW
|
22
|
158 mW
|
44
|
25 W
| ||
1
|
1.3 mW
|
23
|
200 mW
|
45
|
32 W
| ||
2
|
1.6 mW
|
24
|
250 mW
|
46
|
40 W
| ||
3
|
2.0 mW
|
25
|
316 mW
|
47
|
50 W
| ||
4
|
2.5 mW
|
26
|
398 mW
|
48
|
64 W
| ||
5
|
3.2 mW
|
27
|
500 mW
|
49
|
80 W
| ||
6
|
4 mW
|
28
|
630 mW
|
50
|
100 W
| ||
7
|
5 mW
|
29
|
800 mW
|
53
|
200 W
|
กำลังส่งยิ่งสูง สัญญาณวิทยุยิ่งไปได้ไกล แต่ต้องอยู่ในความสมดุลของอุปกรณ์ เพราะถ้ากำลังส่งสูงเกินไปจนทำให้อุปกรณ์อิเล็กทรอนิกส์อื่นๆ ในอุปกรณ์ Wireless เสียหายเช่น ภาคกรองความถี่ อาจจะเกินคลื่นวิทยุที่ไม่พึงประสงค์ออกมารบกวนอย่างรุนแรงได้
กรณีที่กำลังส่งเท่ากัน สายอากาศประเภทเดียวกันและอัตราขยายเท่ากัน ความถี่วิทยุที่ต่ำกว่าจะไปได้ไกลกว่า เนื่องจากอัตราการสูญเสียสัญญาณน้อยกว่า และการเดินทางของสัญญาณมีลักษณะกระจายมากกว่า เช่น กำลังส่ง 1 วัตต์ที่ความถี่ 7 MHz เสาสูง 20 เมตร จากไทยสามารถส่งไปได้ถึงหมู่เกาะมัลดีฟส์ ฝั่งทะเลตะวันตกของอินเดีย ส่วนกำลังส่ง 1 วัตต์ที่ความถี่ 2.4 GHz เสาสูง 20 เมตรอาจจะไปได้ 20 กิโลเมตร โดยประมาณ
(ส่วนใหญ่ขึ้นอยู่กับสภาพแวดล้อม เช่น สภาพอากาศ ความชื้น ตำแหน่งความสูงของสายอากาศ เป็นต้น)
ตำแหน่งความสูงของสายอากาศ
ตำแหน่งความสูงของสายอากาศจะมีค่าแปรผันตามความถี่วิทยุ ยิ่งความถี่สูงขึ้น ลักษณะการแพร่กระจายจะเข้มข้นขึ้นและกระจายตัวน้อยลง ทำให้ได้รับผลกระทบจากส่วนโค้งของผิวโลกโดยตรง จึงต้องติดตั้งสายอากาศให้สูงขึ้น
สิ่งบดบัง
สิ่งบดบังที่อยู่ระหว่างทางจะมีผลกระทบในการรับ-ส่งสัญญาณ โดยเฉพาะความถี่วิทยุที่สูงขึ้นยิ่งเกิดผลกระทบมากขึ้น
วัสดุที่ดูดซับหรือบดบังสัญญาณได้มากที่สุด คือ วัสดุที่มีความชื้นสูงหรือความหนาแน่นสูง เช่น ม่านน้ำตก ต้นไม้ที่ขึ้นหนาแน่น คอนกรีตเสริมเหล็กหนา เป็นต้น
เสา (Tower)
มีหลายรูปแบบให้เลือกใช้งานตามพื้นที่ที่ต้องการใช้งาน
- Guy wired ใช้ลวดสลิงเป็นตัวพยุงเสา น้ำหนักเสาเบาแต่จะใช้พื้นที่ค่อนข้างมาก ถ้าใช้แบบท่อเหล็กเดี่ยว ไม่ควรสูงเกิน 12 เมตร เนื่องจากความยากลำบากในการซ่อมบำรุง
- Self support ใช้ตัวเสาเป็นตัวพยุงเสาของมันเอง ใช้พื้นที่น้อยกว่า แต่น้ำหนักมาก เพราะต้องรักษาระดับด้วยตัวมันเอง
มีทั้งแบบที่ทำจากเหล็กและอลูมิเนียม และการตั้งเสาสูงต้องอยู่ในกฎข้อบังคับของกรมการขนส่งทางอากาศด้วย
การรบกวนสัญญาณ
การรบกวนและการถูกรบกวนสัญญาณ เกิดได้จากหลายสาเหตุ สิ่งที่มีผลกระทบโดยตรงกับ Wireless คือคลื่นแม่เหล็กไฟฟ้า เพราะเป็นคลื่นประเภทเดียวกัน แม้ว่าความถี่จะไม่ตรงกันหรือห่างกันมาก แต่ถ้าหากความเข้มข้นของคลื่นแม่เหล็กไฟฟ้ามีสูง หรืออุปกรณ์ด้อยประสิทธิภาพในการคัดกรองคลื่นรบกวน โดยเฉพาะอุปกรณ์ส่งสัญญาณที่ส่งกำลังสูงแต่ส่งคลื่นที่ไม่พึงประสงค์ออกมามาก ยิ่งมีผลกระทบมาก
ส่วนสาเหตุจากธรรมชาติจะเป็นประจุไฟฟ้าในอากาศ เช่น ฟ้าผ่า พายุสุริยะ ขั้วแม่เหล็กโลก เป็นต้น
Dynamic Frequency Selection (DFS)
เป็นรูปแบบการเปลี่ยนช่องสัญญาณเองโดยอัตโนมัติ เมื่ออุปกรณ์ตรวจพบสัญญาณรบกวนจากความถี่เรดาร์ภาคพื้นดิน ซึ่งได้รับการยืนยันในหลายพื้นที่ของประเทศไทยแล้วว่าช่วงความถี่ที่ถูกรบกวนมากที่สุดคือ 5.5 – 5.7 GHz (5 GHz Middle band) โดยจะมีผลกระทบมากกับการเชื่อมต่อสัญญาณระยะไกล
No comments:
Post a Comment